Models for Fanning and Bending Sub-Voxel Structures in Diffusion MRI
نویسندگان
چکیده
We present a new model for fanning and bending white matter structures on a sub-voxel scale. We devise a parametric model of how the fibre orientation varies spatially over each sub-voxel in the voxel grid for both types of configuration. Fitting the model provides quantitative information about the degree of fanning or bending in each voxel. We demonstrate using data from a standard human brain diffusion MRI acquisition.
منابع مشابه
Improved tractography using asymmetric fibre orientation distributions
Diffusion MRI allows us to make inferences on the structural organisation of the brain by mapping water diffusion to white matter microstructure. However, such a mapping is generally ill-defined; for instance, diffusion measurements are antipodally symmetric (diffusion along x and -x are equal), whereas the distribution of fibre orientations within a voxel is generally not symmetric. Therefore,...
متن کاملBeyond Crossing Fibers: Tractography Exploiting Sub-voxel Fibre Dispersion and Neighbourhood Structure
In this paper we propose a novel algorithm which leverages models of white matter fibre dispersion to improve tractography. Tractography methods exploit directional information from diffusion weighted magnetic resonance (DW-MR) imaging to infer connectivity between different brain regions. Most tractography methods use a single direction (e.g. the principal eigenvector of the diffusion tensor) ...
متن کاملLabeling of ambiguous subvoxel fibre bundle configurations in high angular resolution diffusion MRI
Whereas high angular resolution reconstruction methods for diffusion MRI can estimate multiple dominant fibre orientations within a single imaging voxel, they are fundamentally limited in certain cases of complex subvoxel fibre structures, resulting in ambiguous local orientation distribution functions. In this article we address the important problem of disambiguating such complex subvoxel fib...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملMultiple Fibres: Beyond the diffusion tensor
This chapter covers techniques for resolving multiple fibre populations in each voxel, as well as methods to exploit the information they recover. It begins by describing the limitations of DTI and the problems that complex white-matter configurations such as crossing fibre-populations and bending fibres present. It then goes on to describe multiple-tensor models, diffusion spectrum imaging, QB...
متن کامل